[Car90]A. E. Carlsson, Beyond Pair Potentials in Transition Metals and Semiconductors, Solid State Physics 43, 1 (1990); series published by Academic Press, edited by H. Ehrenreich and D. Turnbull doi:10.1088/0965-0393/8/6/305
[StiWeb84]F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31, 5262 (1984); doi:10.1103/PhysRevB.31.5262
[Fre12]D. Frenkel, Simulations: the dark side, arXiv:1211.4440 [cond-mat.stat-mech]; download

Bond-order potentials

[Abe85]G. C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding, Phys. Rev. B 31, 6148 (1985); doi:10.1103/PhysRevB.31.6184
[Ter86]J. Tersoff, New Empirical Model for the Structural Properties of Silicon, Phys. Rev. Lett. 56, 632 (1986); doi:10.1103/PhysRevLett.56.632
[Ter88a]J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B 37, 6991 (1988); doi:10.1103/PhysRevB.37.6991
[Ter88b]J. Tersoff, Empirical interatomic potential for silicon with improved elastic properties, Phys. Rev. B 38, 9902 (1988); doi:10.1103/PhysRevB.38.9902
[Ter88c]J. Tersoff, Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon, Phys. Rev. Lett. 61, 2879 (1988); doi:10.1103/PhysRevLett.61.2879
[Ter89]J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B. 39, 5566 (1989); doi:10.1103/PhysRevB.39.5566
[Bre89]D. W. Brenner, Relationship between the Embedded-Atom Method and Tersoff Potentials, Phys. Rev. Lett. 63, 1022 (1989); doi:10.1103/PhysRevLett.63.1022
[Bre90]D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films, Phys. Rev. B 42, 9458 (1990); doi:10.1103/PhysRevB.42.9458
[BreSheHar02]D. W. Brenner, O. A. Shenderov, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys. Cond. Matter 14, 783 (2002); doi:10.1088/0953-8984/14/4/312
[AlbNorAve02]K. Albe, K. Nordlund, and R. S. Averback, Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon, Phys. Rev. B 65, 195124 (2002); doi:10.1103/PhysRevB.65.195124
[AlbNorNor02]K. Albe, K. Nordlund, J. Nord, and A. Kuronen, Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs, Phys. Rev. B 66, 035205 (2002); doi:10.1103/PhysRevB.66.035205
[NorAlbErh03]J. Nord, K. Albe, P. Erhart, and K. Nordlund, Modelling of compound semiconductors: Analytical bond-order potential for gallium, nitrogen and gallium nitride}, J. Phys. Cond. Matter 15, 5649 (2003); doi:10.1088/0953-8984/15/32/3245
[ErhAlb05]P. Erhart and K. Albe, Analytical Potential for Atomistic Simulations of Silicon and Silicon Carbide, Phys. Rev. B 71, 035211 (2005); doi:10.1103/PhysRevB.71.035211
[ErhJusGoy06]P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe, Analytic bond-order potential for atomistic simulations of zinc oxide, J. Phys. Cond. Matter 18, 6585 (2006); doi:10.1088/0953-8984/18/29/003
[JusErhTra05]N. Juslin, P. Erhart, P. Träskelin, J. Nord, K. Henriksson, E. Salonen, K. Nordlund, and K. Albe, Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system, J. Appl. Phys. 98, 123520 (2005); doi:10.1063/1.2149492
[MulErhAlb07a]M. Müller, P. Erhart, and K. Albe, Analytic bond-order potential for bcc and fcc iron - comparison with established embedded-atom method potentials, J. Phys. Cond. Matter 19, 326220 (2007); doi:10.1088/0953-8984/19/32/326220
[MulErhAlb07b]M. Müller, P. Erhart, and K. Albe, Thermodynamics of L10 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential, Phys. Rev. B 76, 155412 (2007); doi:10.1103/PhysRevB.76.155412
[PetGreWah15]M. V. G. Petisme, M. A. Gren, and G. Wahnström, Molecular dynamics simulation of WC/WC grain boundary sliding resistance in WC–Co cemented carbides at high temperature, Internat. J. Refractory Met. Hard Mater. 49, 75 (2015); doi:10.1016/j.ijrmhm.2014.07.037

Embedding methods

[StoZar80]M. J. Stott and E. Zaremba, Quasiatoms: An approach to atoms in nonuniform electronic systems, Phys. Rev. B 22, 1564 (1980); doi:10.1103/PhysRevB.22.1564
[PusNieMan81]M. J. Puska, R. M. Nieminen, and M. Manninen, Atoms embedded in an electron gas: Immersion energies, Phys. Rev. B 24, 3037 (1981); doi:10.1103/PhysRevB.24.3037
[Nor82]J. K. Nørskov, Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the 3d metals, Phys. Rev. B 26, 2875 (1982); doi:10.1103/PhysRevB.26.2875
[FinSin84]M. W. Finnis and J. E. Sinclair, A simple empirical N-body potential for transition metals, Phil. Mag. A 50, 45 (1984); doi:10.1080/01418618408244210
[DawBas83]M. S. Daw and M. I. Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Phys. Rev. Lett., 50, 1285 (1983); doi:10.1103/PhysRevLett.50.1285
[DawBas84]M.S. Daw and M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals, Phys. Rev. B 29, 6443 (1984); doi:10.1103/PhysRevB.29.6443
[FoiBasDaw86]M. S. Daw, S. M. Foiles, and M. I. Baskes, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33, 7983 (1986); doi:10.1103/PhysRevB.33.7983
[DawFoiBas93]M. S. Daw, S. M. Foiles, and M. I. Baskes, The embedded-atom method - A review of theory and applications, Mater. Sci. Rep. 9, 251 (1993); doi:10.1016/0920-2307(93)90001-U
[ErcTosPar86]F. Ercolessi, E. Tosatti, and M. Parrinello, Au (100) Surface Reconstruction, Phys. Rev. Lett. 57, 719 (1986); doi:10.1103/PhysRevLett.57.719
[ErcAda94]F. Ercolessi and J. B. Adams, Interatomic potentials from first-principles calculations: the force-matching method, Europhys. Lett. 26, 583 (1994); doi:10.1209/0295-5075/26/8/005
[MisMehPap01]Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63, 224106 (2001); doi:10.1103/PhysRevB.63.224106

Modified embedded atom method

[Bas87]M. Baskes, Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon, Phys. Rev. Lett. 59, 2666 (1987); doi:10.1103/PhysRevLett.59.2666
[Bas92]M. Baskes, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B 46, 2727 (1992); doi:10.1103/PhysRevB.46.2727
[LeeBasKim01]B.-J. Lee, M. I. Baskes, H. Kim, and Y. K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B 64, 184102 (2001); doi:10.1103/PhysRevB.64.184102
[LenSadAlo00]T. J. Lenosky, B. Sadigh, Babak, E. Alonso, V. V. Bulatov, T. Diaz de la Rubia, J. Kim, A. F. Voter, and J. D. Kress, Highly optimized empirical potential model of silicon, Modelling Simul. Mater. Sci. Eng. 8, 825 (2000); doi:10.1088/0965-0393/8/6/305